927 research outputs found

    The statistical mechanics of multi-index matching problems with site disorder

    Get PDF
    We study the statistical mechanics of multi-index matching problems where the quenched disorder is a geometric site disorder rather than a link disorder. A recently developed functional formalism is exploited which yields exact results in the finite temperature thermodynamic limit. Particular attention is paid to the zero temperature limit of maximal matching problems where the method allows us to obtain the average value of the optimal match and also sheds light on the algorithmic heuristics leading to that optimal matchComment: 11 pages 11 figures, RevTe

    Shell-model Monte Carlo studies of nuclei far from stability

    Full text link
    The shell-model Monte Carlo (SMMC) technique transforms the traditional nuclear shell-model problem into a path-integral over auxiliary fields. The authors describe below the method and its applications to two physics issues: calculations of electron-capture rates, and exploration of pairing correlations in unstable nuclei

    Pairing correlations in N~Z pf-shell nuclei

    Get PDF
    We perform Shell Model Monte Carlo calculations to study pair correlations in the ground states of N=ZN=Z nuclei with masses A=48-60. We find that T=1T=1, Jπ=0+J^{\pi}=0^+ proton-neutron correlations play an important, and even dominant role, in the ground states of odd-odd N=ZN=Z nuclei, in agreement with experiment. By studying pairing in the ground states of 52−58^{52-58}Fe, we observe that the isovector proton-neutron correlations decrease rapidly with increasing neutron excess. In contrast, both the proton, and trivially the neutron correlations increase as neutrons are added. We also study the thermal properties and the temperature dependence of pair correlations for 50^{50}Mn and 52^{52}Fe as exemplars of odd-odd and even-even N=ZN=Z nuclei. While for 52^{52}Fe results are similar to those obtained for other even-even nuclei in this mass range, the properties of 50^{50}Mn at low temperatures are strongly influenced by isovector neutron-proton pairing. In coexistence with these isovector pair correlations, our calculations also indicate an excess of isoscalar proton-neutron pairing over the mean-field values. The isovector neutron-proton correlations rapidly decrease with temperatures and vanish for temperatures above T=700T=700 keV, while the isovector correlations among like nucleons persist to higher temperatures. Related to the quenching of the isovector proton-neutron correlations, the average isospin decreases from 1, appropriate for the ground state, to 0 as the temperature increases

    Relativistic Heavy--Ion Collisions in the Dynamical String--Parton Model

    Get PDF
    We develop and extend the dynamical string parton model. This model, which is based on the salient features of QCD, uses classical Nambu-Got\=o strings with the endpoints identified as partons, an invariant string breaking model of the hadronization process, and interactions described as quark-quark interactions. In this work, the original model is extended to include a phenomenological quantization of the mass of the strings, an analytical technique for treating the incident nucleons as a distribution of string configurations determined by the experimentally measured structure function, the inclusion of the gluonic content of the nucleon through the introduction of purely gluonic strings, and the use of a hard parton-parton interaction taken from perturbative QCD combined with a phenomenological soft interaction. The limited number of parameters in the model are adjusted to e+e−e^+e^- and pp --pp data. Utilizing these parameters, the first calculations of the model for pp --AA and AA--AA collisions are presented and found to be in reasonable agreement with a broad set of data.Comment: 26 pages of text with 23 Postscript figures placed in tex

    Temperature dependence of the nuclear symmetry energy

    Get PDF
    We have studied the properties of A=54 and A=64 isobars at temperatures T \leq 2 MeV via Monte Carlo shell model calculations with two different residual interactions. In accord with empirical indications, we find that the symmetry energy coefficient, b_{sym}, is independent of temperature to within 0.6 MeV for T \leq 1 MeV. This is in contrast to a recent suggestion of a 2.5 MeV increase of b_{sym} for this temperature, which would have significantly altered the supernova explosion scenario.Comment: 7 pages, including 2 figures, Caltech preprint MAP-17

    Shell model Monte Carlo calculations for Dy-170

    Full text link
    We present the first auxiliary field Monte Carlo calculations for a rare earth nucleus, Dy-170. A pairing plus quadrupole Hamiltonian is used to demonstrate the physical properties that can be studied in this region. We calculate various static observables for both uncranked and cranked systems and show how the shape distribution evolves with temperature. We also introduce a discretization of the path integral that allows a more efficient Monte Carlo sampling.Comment: 11 pages, figures available upon request, Caltech Preprint No. MAP-16

    Neutral-current neutrino reactions in the supernova environment

    Get PDF
    We study the neutral-current neutrino scattering for four nuclei in the iron region. We evaluate the cross sections for the relevant temperatures during the supernova core collapse and derive Gamow-Teller distributions from large-scale shell-model calculations. We show that the thermal population of the excited states significantly enhances the cross sections at low neutrino energies. Calculations of the outgoing neutrino spectra indicate the prospect of neutrino upscattering at finite temperatures. Both results are particularly notable in even-even nuclei.Comment: 14 pages, 4 figures, accepted in Phys. Lett. B

    On the temperature dependence of the symmetry energy

    Get PDF
    We perform large-scale shell model Monte Carlo (SMMC) calculations for many nuclei in the mass range A=56-65 in the complete pfg_{9/2}d_{5/2} model space using an effective quadrupole-quadrupole+pairing residual interaction. Our calculations are performed at finite temperatures between T=0.33-2 MeV. Our main focus is the temperature dependence of the symmetry energy which we determine from the energy differences between various isobaric pairs with the same pairing structure and at different temperatures. Our SMMC studies are consistent with an increase of the symmetry energy with temperature. We also investigate possible consequences for core-collapse supernovae events
    • 

    corecore